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1.  INTRODUCTION 

Many circumstances exist for which one may wish to identify, or at least image, a 
distant object (target), for example, a vehicle, when one cannot see the object clearly 
because of obscuration, such as fog, smoke, or haze. A useful technique for performing 
such imagery may be laser imaging radar, or lidar. Key advantages of lidar are (1) using 
short pulses, one may determine a range profile, (2) using receiving optics, one may 
determine azimuth and elevation resolution. Because the transmitted electromagnetic 
radiation is either visible or infrared, the relatively short wavelength provides a 
diffraction-limited angular resolution much finer than for microwave radar, for which 
target rotation is usually required to obtain fine cross-range resolution. 

A particularly useful lidar concept is “flash lidar.” A single laser pulse illuminates 

the entire target. Scattered light (photons) from various parts of the target is received by 

the lidar optics and focused onto an array of detectors. Because the target is usually quite 

far from the lidar, the array of detectors (called the “focal plane array,” or FPA) is 

typically in the focal plane. A target image is thereby formed; each detector produces a 

single pixel. Each detector is also assumed capable of resolving the arrival time of a 

photon. When this arrival time is interpreted as a delay td relative to the arrival time of a 

photon from the part of the target nearest the lidar, then the depth of the pixel may be 

inferred as ctd/2, and a 3D image, consisting of a 3D array of voxels, may be formed. 

Some photons travel through the obscurant without scattering; these are termed 

“ballistic” photons and can produce an undistorted 3D image. Others are scattered but 

nevertheless reach the FPA; these “diffuse” photons interfere with the clarity of the target 

image. For given assumptions about the parameters of the lidar (including detector noise 

level), obscurant, and target, our model simulates a 3D target image and, for each voxel, 

indicates the number of detector counts due to ballistic photons, diffuse photons, and 

noise. 
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2.  FLASH LIDAR 

We assume a circular receive aperture (lens or mirror) of diameter D and focal 
length d, with an FPA consisting of nx × ny detectors (pixels), with center-separation 
(pitch) w<<d . The single-pixel (“instantaneous”) field-of-view (IFOV) is then w/d 
(radians) and the overall field-of-view (FOV) is ~ nx w/d x ny w/d. Because the target 
and/or lidar platform may be moving, it is advantageous to transmit a short pulse and 
receive the echo pulse on all detectors in parallel. Each detector records the arrival time 
of photon(s), quantizing this into a series of “time bins.” This concept is “flash lidar” as 
opposed to the more traditional scanning lidar. The plane in which the target is focused is 
the image plane. We assume that the target is relatively far from the lidar, and that the 
image plane is therefore the focal plane. We also assume that the flash lidar is not a 
search device, but that the target has been already located by another sensor, for example, 
a microwave radar or a forward-looking infrared (FLIR). The lidar is a “soda-straw” 
sensor, used for target recognition and identification. Figure 1 presents an overview of 
the flash lidar concept. 

Return Path  (Monte Carlo)
“Absorption Gated” Photon

“Diffuse” Photon

“Ballistic”  Photon

Focal Plane Array

Aperture

“Spatially Gated” Photon

Outgoing Laser Pulse
(Beer’s Law)

Isotropically Scattering 
Spherical Target

 

Figure 1.  Flash Lidar—Overview 
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The lidar transmits a pulse of energy E (millijoules) and width τ (nanoseconds). 
The beam is assumed to be well collimated, such that, in the absence of obscurants, most 
of the energy strikes the target, which is at range R, and all of the target is illuminated by 
the beam. Scattering from the target is assumed to be isotropic (see Section 4). Scattered 
energy is received by the lidar optics and focused onto the FPA. 

If obscurant is present (assumed for now to be homogeneous everywhere in 
space), then lidar energy moving a distance z through the obscurant will decay according 
to exp(–z/L), where z is the distance traveled, and L is the scattering length and equals the 
mean free path of the photon ([1], p. 259). This simple equation is known as Beer’s Law 
([2], Vol. 3, p. 4). The unscattered photons continue to travel in a straight line. After 
Wang et al. [3] we refer to these as “ballistic” photons. Each time a photon is scattered, 
the probability of its not being absorbed is the single-scattering albedo; the photons that 
are scattered but not absorbed are referred to as “diffuse” photons. (Wang et al. [3] also 
refer to “snake” photons as those that are scattered, but not enough to hit a different 
detector element. We prefer to avoid this term.) Values of γ = 1/L for some typical 
obscurants and wavelengths are given in [4]. 

When a fog or other atmospheric obscurant has a “visibility” characterized by a 
particular range, then, at that range, the received intensity is two percent of the clear-air 
value. Thus the “visibility” = 3.912 scattering lengths [4], since e–3.912 = 0.02. 

When a pulse is transmitted, the estimated number of ballistic photons received 
by a single detector (pixel) is then 

 LR
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b e

NR
D

hc
EN /2

2

2 1
4

)2/(
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−⋅= η
π

πρ
λ

   , (1) 

where λ is the photon wavelength, h is Planck’s constant, c is the speed of light, hc/λ is 
the energy of a single photon, E is the pulse energy, R is the range to the target, L is the 
scattering length, D is the aperture diameter, ρ is the target reflectivity, Npix is the number 
of pixels occupied by the target image in the FPA. η is the “overall efficiency” and 
includes such parameters as overlap of beam and target, optics transmission, FPA fill 
factor (ratio of area occupied by detectors to total FPA area), and detector quantum 
efficiency. We assume that η = 0.1. We assume that, by the time the first ballistic photons 
arrive at the FPA, the rate of arrival of received “pathback” photons (those scattered from 
the obscurant as the pulse travels to the target) is small compared with the rate of arrival 
of ballistic and diffuse photons scattered from the front (nearest point) of the target. This 
assumption is supported by experiments [5]. 
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Before performing a detailed Monte Carlo calculation, it is important to compute 
Nb. If Nb is large, say > 1,000, then it is probably straightforward to obtain a clear image. 
If Nb is less than ~1, then a clear image may not be possible using a single laser pulse, 
though it may be possible using pulse integration and a very low-noise detector. Figure 2 
shows Nb for some specific parameter values. 
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Figure 2.  Estimated Number of Total and Ballistic Photons per Pixel 
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3.  PHOTON SCATTERING 

To consider the scattering of a photon, we use two spherical coordinate systems - 
a “lab frame,” with the z-axis along the initial photon direction, and a “photon frame,” 
whose z axis is along the current direction of propagation (initially, the two frames are 
co-aligned). At each scattering event the new direction and new photon frame is 
characterized by polar angle θ  and azimuthal angle φ, measured with respect to the 
previous photon frame. The distribution of scattering directions is given by the phase 
function P(θ,φ) ([6], Vol. 2, Chapter 10). We assume a simple model such that φ is 
distributed uniformly from 0 to 2π (photon polarization effects are neglected), and the 
distribution over θ is given by Φ(θ) (the standard notation [6]). The normalization is as 
follows: 

 

2)sin()(

4)sin()(

)sin()(),(

0

2

0 0

∫

∫ ∫
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=Φ
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The actual form of Φ is given by Mie theory. Because it is complicated, a simple 
approximation is typically used. Many such approximations exist. We chose the Henyey-
Greenstein (HG) function ([6], Vol. 2, p. 307) because it is widely used and 
mathematically tractable: 

 
( ) 2/32
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−
=Φ  , 0 < g < 1   . (3) 

The parameter g characterizes the degree of forward scattering. Isotropic scattering 
occurs for g = 0. Plots of Φ(g,θ) are given in Figure 3. The procedure for generating a 
random θ according to this distribution is given in Appendix A. Approximate values of g 
for some obscurants are also given in [7], based on [6], Vol. 2, Chapter 10. 
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g(typical, 1.54 µm)= 

~0.05 – haze
~0.6  -- smoke
~0.8 – 0.9 – fog, cloud, rain

g = 0 g = 0.3 g = 0.6 g = 0.9
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Figure 3. Scattering Angle Distributions 
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4.  MONTE CARLO MODEL 

The IDA Flash Lidar Monte Carlo Model works as follows. (An earlier version 
was described in [7].) From the lidar to the target, the intensity of the beam is computed 
simply by Beer’s Law. We assume no absorption by the obscurant (often a good 
assumption [6]). The total number of photons that are scattered isotropically from the 
target and return to a detector in the lidar FPA is then given by 

 LR
b
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)2/(
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=⋅= −η
π

πρ
λ
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because each photon scattered from the target eventually reaches the surface of the sphere 
of radius R centered at the target. 

Each photon scattered from the target is modeled separately. The photon leaves 
the target in a specified direction (Θ = 0, Φ = 0 in the lab frame). The path length l 
between successive scattering events is selected randomly from an exponential 
distribution /1( ) l L

Lf l e−= ; this is carried out by choosing u from a uniform random 
distribution on [0,1] and computing ln( )l L u= − (see also [7]). The new scattering 

direction is then chosen by randomly selecting the scattering angles θ and φ, as described 
above. The transformation from lab frame is accomplished by a suitable product of 
rotation matrices, the exact form of which is given in Appendix C. This scattering 
procedure is iterated until the photon range exceeds R, at which point the model 
computes the exit time, values of θ,φ, and values of Θ,Φ. We then invoke the assumption 
of isotropic scattering from the target: for each photon leaving the target at 0,0 and 
exiting the sphere at (Θ,Φ), there is an equally likely photon leaving the target at (π–
Θ,−Φ ) and exiting the sphere at (0,0). Therefore each modeled photon can be considered 
as a photon that strikes the lidar aperture. This procedure greatly decreases computation 
time. Computer time is also saved by terminating consideration of any photon whose 
travel time is greater than the time corresponding to the last time bin being recorded by 
the detector. The model also includes the option of assuming that the obscurant is 
confined to a layer between concentric spheres of radii R1 and R2 (0 ≤ R1 ≤ R2 ≤ R). 

Many photons that strike the aperture still do not strike the FPA, since their 
incident angle is too large; these are “spatially-gated” photons—see Figure 1. For each 
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photon striking the aperture, whether ballistic or diffuse, the model computes the FPA 
detector element (nx, ny) that it strikes (if any), and the delay time t. 

Three-dimensional plots of incident photons versus nx (width), ny (height), and t 
(depth) are produced. The time spacing ∆t corresponds to the FPA time resolution; the 
laser pulse width is assumed to be much shorter. The 3D voxel spatial dimensions are 
then w x w x c∆t/2 (assuming a FPA fill factor of 1.0). 

The user specifies the mean number of noise counts (“noise photons”) per voxel, 
which depends on the type of detector being used. The number of noise counts in the 
voxel is then chosen randomly according to a Poisson distribution. The model considers 
both linear detectors, which record the number of incident photons plus noise counts, and 
Geiger detectors, which record “1” if the total of incident photons plus computed noise 
counts in the voxel exceeds unity. The model accounts for the fact that, once a Geiger 
detector has recorded a photon, its relatively long recovery time prevents it from 
detecting another photon scattered from the same laser pulse. (We assume that the pulse 
repetition frequency [PRF] is low enough that the detector recovers before the next pulse 
is received.) The model also allows for integration of a number of laser pulses. After 
pulse integration, the mean of the noise is subtracted. It is assumed that the sensor is well 
characterized, the noise is stationary, and the mean of the noise is well known. 

We expect the numbers of ballistic and diffuse photons in a voxel to be Poisson-
distributed (and we specifically assume the noise to be Poisson), since they all satisfy 
criteria described in [9]: “The Poisson distribution describes the population of events in 
any interval of x (e.g., space or time) whenever (a) the number of events in any interval of 
x is independent of that in any other non-overlapping interval; (b) in any small ∆x, the 
probability of one event is λ∆x and the probability of two or more vanishes at least as fast 
as (∆x)2 as ∆x → 0; and (c) λ does not depend on x. Then [the mean] µ ≡ λx; E(n) = 
µ ; Var(n) = µ .” 

Table 1 presents a summary of the inputs and outputs of the Monte Carlo model. 
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Table 1. Summary of Monte Carlo Model Inputs and Outputs 

(B = ballistic photons, D = diffuse photons, N = noise photons,  
Nmean = average of noise counts over FPA) 

Given:  
 Pulse energy 
 Wavelength 
 Range (R) 
 R1, R2 = inner and outer ranges of obscurant layer (target is R = 0) 
 (R2 – R1)/(L (L = scattering length) 
 Henyey-Greenstein factor = g (could be generalized), scattering Albedo = a 
 Target reflectivity (target isotropic, “Lambertian,” or “specular”) 
 Aperture diameter 
 Focal length 
 FPA size (nx, ny) 
 Pitch 
 Overall efficiency (includes fill factor, optics, transmission, quantum 

efficiency) 
 Time gate (assumed >> laser pulse width) 
 Number of time gates 
 Number of pulses integrated 
 Mean of noise (assume Poisson) 
 Detector type: linear or Geiger 
  
Compute:  
 B, B + D, B + D + N, B + D + N – Nmean 
 Photons received per voxel (x, ∆x; y , ∆y; t, ∆t) 
 3D plot, movie 
 3D FPA plots, successive times 
 2D FPA plots, successive times 
 2D FPA matrices (numerical values), successive times 
 Photons vs. angle and time 
 Photons vs. angle, all times; vs. time, all angles 
 

Figure 4 shows model results giving the photon distribution versus delay time 
(after the arrival of the ballistic photons) and scattering factor g, for a point target; Figure 
5 illustrates the photon distribution versus incident angle and g; and Figure 6 shows the 
photon distribution versus delay time, incident angle, and g. In Figures 4 and 5, the color 
scale indicates the fraction of photons in the bin. Each row represents a histogram with 
total value 1.0; since there are 100 rows, the total of the color-scale value over the figure 
is 100. It may be seen that, for the parameters assumed (R = 100 m, R/L = 4), for g ≤ 0.9, 
the typical delay is greater than 1 nsec and the typical incident angle (angle between 
photon direction and normal to aperture) is greater than 5 deg. In Figure 6, the incident 
angle is translated into “pixels away,” that is, the distance between the center of the FPA 
and the detector recording the photon, measured in pixel diameters. It may be seen that 
for g < 0.9, most photons arrive more than 100 pixels from the FPA center and with a 
delay time greater than 1 nsec. For g = 0.99, the opposite is true. 
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If the beam divergence were small, then many outward-bound photons, even 
though they had been scattered, could still strike the target, thus increasing the estimated 
value of Nb given by (1). Model results illustrating this effect are given in Figure 7, under 
the assumptions used to compute the results (R = 100 m, R/L = 4, g = 0.99; see Section 
6). Our target’s 70 cm diameter subtends an angle, as seen from the lidar, of ±3.5 mrad 
(0.35 m)/(100 m). Figure 7 shows that the fraction of outgoing beam that scatters but still 
strikes the target is ~ 5% of the outward-bound scattered photons. About 2% (= e–R/L) of 
the outward-bound photons are ballistic.  A correction to the results in Section 6 could be 
made for this effect; we have not done so here. 

R = 100 m, R/L = 4. For g < 0.9, Typical Delay > 1 nsec.  

Figure 4. Photon Distribution versus Delay Time and Scattering Factor 
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R/L = 4. For g < 0.9, Typical Incident Angle > 5 deg.  

Figure 5. Photon Distribution versus Incident Angle and Scattering Factor 

 

Figure 6. Photon Distribution versus Delay Time, Pixel Location, and Scattering Factor 
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Figure 7. Photon Distribution versus Beam Angle (left scale corresponds to  
jagged line; right scale corresponds to smooth line) 
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5.  OTHER CONSIDERATIONS 

5.1 FORWARD SCATTERING 

The HG function underestimates the number of scattered photons very near the 
forward direction. More exact phase functions should be used for detailed estimates. For 
this reason we assume g = 0.99 for the highly forward scattering considered herein, rather 
than g ~ 0.9, as indicated in Figure 3. 

The effect is related to the forward-scattering phenomenon encountered in 
classical electromagnetic (EM) scattering theory. For near-isotropic scattering from a 
sphere of radius a, Jackson [10], p. 451, states: 

The scattering in the forward direction is a typical diffraction pattern with 
a central maximum and smaller secondary maxima [Bessel function 
pattern], while at larger angles it is isotropic… The total scattering cross 
section is obtained by integrating over all angles. Neglecting the 
interference terms, we find…that the shadow diffraction peak [width ~ 
λ/2πa] gives a contribution of πa2, and so does the isotropic part. The total 
scattering cross section is thus 2πa2. 

5.2 THERMAL PHOTONS 

We estimate the number of thermal photons that are received at a detector 
(individual pixel) during a time gate. Because the optics are presumably at approximately 
room temperature, we make the approximation that the detector (area = w2, neglecting the 
fill factor) is at the center of a hemisphere of radius R with an inner surface at 
temperature 300 K and emissivity of unity. The thermal emission from the hemisphere is 
given by the well-known Planck function 

 
( )

3
-2 -1 -1

2 /

2 1( ) W m Hz  sr
1hf kT

hfB f
c e

ε=
−

   , (5) 

where h, k, and c are Planck’s constant, Boltzmann’s constant, and the speed of light 
respectively, f = c/λ = 194 THz, T = 300 K, and ε = emissivity = 1. The number of 
thermal photons per pixel expected in a time bin is then independent of R: 
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where ∆f = bandwidth, assumed to be 630 GHz (corresponding to ∆λ = 5 nm), δt = time 
bin = 1 ns. For the assumed lidar, Nppixth = 1.3 × 10–8 photons, entirely negligible. 

5.3 SOLAR PHOTONS 

The intensity of sunlight at Earth at 1.54 µm is Fsolar ~ 270 W m-2 µm–1 ([11], p. 
172). We conservatively neglect atmospheric absorption (it is negligible in clear air -- 
[11], p. 122) or any obscurant. We consider direct sunlight falling on the target and 
undergoing Lambertian scattering into 2π steradians. We assume that the scattering plane 
is the xy plane, and that the sun and the lidar are both near the z axis at small values of θ. 
In this case the fraction of emitted energy that strikes the aperture is ~Ωrcv/π, where Ωrcv 
is the solid angle subtended by the lidar aperture, as seen from the target.  The estimated 
number of solar photons striking an individual detector during a time gate is 

 
( )

2( )solar rcv
solar hc

FN R IFOV t
λ

λ δ ρ η
π

Ω
= ⋅ ⋅ ∆ ⋅ ⋅ ⋅    . (7) 

As with (6) for thermal photons, the expression for Nsolar is also independent of R. 

For the parameters assumed in Section 6, Nsolar equals 0.05 photons. For the linear 
detector we may neglect this, especially since direct sunlight is unlikely when obscurants 
are present. For the Geiger detector, a continuous illumination by solar photons can 
reduce the effective number of photons recorded, especially for scatterers located 
relatively deep in the target compared with the front scatterers. 
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6.  RESULTS 

Monte Carlo results were computed for a simulated target consisting of 11 points 
in 3D space arranged approximately in the shape of a small “car,” as shown in Figure 8. 
The points may be thought of, schematically, as two front wheels, two headlights, one 
hood ornament, two top corners of the windshield, two top corners at the rear, and two 
rear wheels. The coordinate system used is 

z = longitudinal axis of target (“car”) = axis of lidar = line between lidar and 
target) 

x = horizontal axis, that is, the left front and the left rear “wheels” have the same x 
value 

y = vertical axis, that is, both “headlights” have the same y value 

To prevent one point from shadowing another, the 11 locations are chosen such that no 
two points have exactly the same values of nx ,ny. The time bin ∆t is taken to be 0.5 nsec;  
the pixel depth = ∆z = c∆t/2 = 7.5 cm = ∆x = ∆y. 

 

Figure 8. The Target Model: “Car” Consisting of 11 Points 
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Figures 9−12 are presented as a computer-printed summary of parameters used 
for the model run, and resulting “quad-charts” showing: 

• top-left: ballistic photons 

• top-right: ballistic + diffuse photons (B + D) 

• bottom-left: ballistic + diffuse + noise photons (B + D + N) 

• bottom-right: ballistic + diffuse + noise photons, minus noise mean (B + D + 
N – Nmean) 

The detailed assumptions are provided in the computer output at the top of 
Figures 9–12. In summary, we assumed 

• R = 100 m 

• an optical depth = R/L = 4 (slightly greater than the “visibility” condition of  
(3.912)L). 

• Nmean = 100 for the linear detector (see [12]) and 5*10-7 for the Geiger 
detector [13, p. 340] 

• E = 0.04 J for the linear detector, 0.0004 J for the Geiger detector 

• a PRF of 100 Hz for the linear-detector lidar and 10,000 Hz for the Geiger-
detector lidar; both have average radiated power = 4 watts 

• integration times of  10 and 100 msec. 

• Geiger recovery time > 10 nsec and < 100 µsec ([14], p. 353) 

Results are summarized as follows. Color scale represents number of photons 
recorded, and varies with each plot. 

• Figure 9: Linear Detector, 10 msec integration  time (1 pulse): 

• Figure 10: Linear Detector, 100 msec integration (10 pulses) 

• Figure 11: Geiger Detector, 10 msec integration time (100 pulses): Note that 
deep scatterers are often not as bright as front scatterers, since sometimes a 
diffuse photon from a front scatterer will trigger the Geiger detector, thereby 
precluding detection of a subsequent photon from a deeper scatterer on the 
same pulse. 

• Figure 12: Geiger Detector, 100 msec integration time (1,000 pulses) 

For the parameters assumed, the results indicate the following. For the linear 
detector, integration over 10 msec (1 pulse) is insuffucient to produce a meaningful 3D 
image, whereas integration over 100 msec (10 pulses) does produce a meaningful image. 
For the Geiger detector, integration over 10 msec (100 pulses) is suffucient to produce a 
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meaningful image, and integration over 100 msec (1,000 pulses) produces a very clear 
image. 

If image quality metrics (IQMs) are developed for flash lidar images of targets in 
obscurants, we suggest that since the effects of multiple target points are important 
(diffuse photons from one target point affect the appearance of other target points), a 
standard 3D multipoint target be used. This is analogous to the standard U.S. Air Force 
bar chart for evaluating electro-optical/infrared imagery. Key inputs to IQMs for various 
lidars could include (1) the full-widths at half maximum (FWHM) in x, y, and z of the 
single-point 3D point-spread function (PSF), caused by diffuse scattering; (2) the signal-
to-interference-plus-noise ratio (SINR); and (3) the gray-scale fidelity. 
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Figure 9. Parameters and Results for Linear Detector, 10 msec Integration Time (1 Pulse) 
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Figure 10. Parameters and Results for Linear Detector, 100 msec  
Integration Time (10 Pulses) 
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Figure 11. Parameters and Results for Geiger Detector, 10 msec  
Integration Time (100 Pulses) 
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Figure 12. Parameters and Results for Geiger Detector, 100 msec 
 Integration Time (1,000 Pulses) 
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7.  POST-PROCESSING OF GEIGER RESULTS 

The one count maximum per pulse per pixel in a Geiger avalanche photodiode 
(APD) imaging array results in two observed phenomena when multiple pulses are 
integrated: (1) the intensity distribution of the incident light does not linearly map to the 
output of the detector, (2) in the 3D image, the intensity of “later” voxels (greater delay 
time) can be suppressed by returns in “earlier” voxels with the same pixel coordinates. 

We may compare the expected number of received counts from linear and Geiger 
detectors as follows. The number of ballistic photons received per pulse is Poisson 
distributed with mean µballistic: 

 ( )
!

ballistic
ballistic

N
ballistic

ballistic
ballistic

P N e
N

µµ −=    . (8) 

For the linear detector 

 2,counts pulses ballistic countsNµ µ σ µ= =    . (9) 

The output initiated by one photon incident on a Geiger detector element is 
assumed to be indistinguishable from that produced by several incident photons. 
Therefore, the output from a Geiger detector element for one pulse is reduced to a 
Bernoulli trial where “success” (a count in this case) can be defined as 1 or more ballistic 
photons received and we denote the probability of that event by p. The distribution is 
binomial with mean np and variance np(1 − p), where n = Npulses: 
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( 1) 1
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ballistic

ballistic
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counts pulses

counts

p P N e

N e

e

µ

µ

µ

µ

σ µ

−

−

−

= ≥ = −

= −

=

   . (10) 

Figure 13 illustrates expected counts for ideal linear and Geiger detectors. The output 
from the Geiger detector increasingly diverges from that of the linear detector as µballistic 
increases.  
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Figure 13. Output (Counts) from Linear and Geiger Detectors 

In order to study the effect of the difference in output between the two detector 
classes, consider an image with two pixels: Br and Dm. Pixel Br is brighter than pixel Dm 
when the image is obtained in linear mode, by a ratio known as the contrast ratio 
CR(Br,Dm). For the linear detector, 

 ( )
( )

( )
( )

( , ) photonscounts
L

counts photons

BrBr
CR Br Dm

Dm Dm
µµ

µ µ
= =    . (11) 

For a Geiger detector, the measured contrast ratio between the same two regions is: 

 ( ) ( )
( )

( )( )
( ) ( )( ),

1
,

1

photons

photons L

Br

counts
G Br CR Br Dm

counts

eBr
CR Br Dm

Dm e

µ

µ

µ
µ

−
= =

−
   . (12) 

Figure 14 shows the relationship between various values of CRG and µphotons(Br).  
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Figure 14. Geiger Detector: Contrast Ratio of Image 

To help remedy the degradation in CR resulting from the detector saturation 
described by (12), a Geiger image may be remapped to a scale more proportional to the 
number of incident photons. Solving (10) for µballistic and multiplying by Npulses, we have  

 ln 1 counts
remapped pulses ballistic pulses

pulses

N N N
N
µµ

⎛ ⎞
= = − −⎜ ⎟⎜ ⎟

⎝ ⎠
   . (13) 

We presumably have only one image and therefore do not know µcounts for each pixel; we 
thus replace µcounts with our best guess, Νcounts. Figure 15 illustrates this Geiger remapping 
technique. 
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Figure 15. Geiger Remapping Technique 

Applying (13) to a 3D image  requires accounting for the recovery time needed by 
the detector elements after being triggered. For simplicity, we assume the recovery time 
TR corresponds to a greater depth than the maximum depth to which the target is being 
imaged. This latter depth corresponds to some number of time-bins nt. In this case, as 
soon as an element is triggered for a voxel located at xi,yj,tk, the voxels “behind” that one 
(xi,yj,tk+1…xi,yj,tnt) will be unresponsive to any incident photons arriving from the target 
resulting from the current laser pulse. Therefore, when remapping the counts 
accumulated in a given voxel, a better  value of Npulses to use in (13), which will be called 
the effective number of pulses integrated or Npulses*, is simply: 

 ( ) ( )
1

*

1
, , , ,

k

pulses i j k pulses counts i j l
l

N x y t N N x y t
−

=

= − ∑    . (14) 

Ncounts (xi, yj, tl) is either 0 or 1. The correction is not exact, since a “1” may sometimes 
indicate more than one count. However, the remapping technique is quite useful. Figure 
16 depicts three-dimensional images before and after remapping and shows that the 
results of Geiger remapping can result in an image that is much easier for a human to 
interpret than the corresponding raw (non-remapped) image. 



 29 

 

 

Figure 16. Three-Dimensional Geiger Images: Raw and Remapped 

Finally, if a detector element at coordinate xi,yj in the imaging array is 
continuously illuminated (e.g., by solar radiation) at a level of µphotons per time bin, 
whether or not that element is available to be triggered in voxel xi,yj,tk depends on 
whether or not it was triggered in any of the preceding voxels: xi,yj,t1,…,xi,yj,tk–1. This is 
equivalent, once again, to a Bernoulli trial where “success” can be defined as 
“untriggered.” The probability that a detector element is untriggered at tk is: 

 ( ) ( ) ( )( )1 1, , , , 0,..., , , 0untriggered i j k photons i j photons i j kp x y t P N x y t N x y t −= = =    , (15) 

and P(Nphotons(xi,yj,tl) = 0) is the “q” (1-p) to the p given in (12). Therefore, 

 ( ) ( )11, , photons kk
untriggered i j kp x y t q e µ− −−= =    . (16) 

The average effective number of pulses integrated for voxel xi,yj,tk is  

 ( ) ( )1* , , photons k
pulses i j k pulsesN x y t N e µ− −=    . (17) 

Npulses* under various levels of continuous illumination is shown in Figure 17. The 
average number of counts expected from a portion of the target located in voxel xi,yj,tk 
then decreases along with Npulses*. 
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Figure 17. Geiger Detector: Eclipsing Effect in Late Time Bins 
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8.  COMPARISON WITH DIFFUSION THEORY 

In this section we discuss a comparison of the Monte Carlo results with results 
from diffusion theory. The following summary is for all scattering angles, for R/L >> 1, 
which we compare to our Monte Carlo results. 

8.1 DIFFUSION EQUATION—PARTICLE FLOW 

The simple diffusion equation for particle flow is obtained as follows ([15], p. 4). 
The particle flow (or probability current density) q (m-2 s–1) is given by 

 q D ρ= − ∇    , (18) 

where D is the diffusion coefficient (m2 s–1) and ρ is the particle density (m–3). From the 
equation of continuity 

 q
t
ρ∂

∇ ⋅ = −
∂

   , (19) 

we have 

 2 1
D t

ρρ ∂
∇ =

∂
   , (20) 

which is the diffusion equation. 

8.2 GREEN FUNCTION SOLUTION 

For this theoretical discussion we take t = 0 as the time the pulse leaves the 
(point) target. For an infinite uniform medium and an impulse at r = 0, t = 0, 
corresponding to the laser pulse just leaving the target, the mathematical conditions are 

 0 0( ,0) ( ), ( , ) 0tρ δ ρ= ∞ =r r    , (21) 

and the solution ([15], p. 29; [16], p. 868) is 

 
2 / 4

0 3/ 2

1( , )
(4 )

r Dtr t e
Dt

ρ
π

−=    . (22) 

The solution is simply a spherically symmetric Gaussian with a variance that grows 
linearly with time; (22) is also known in some communities as the Smirnov density ([17], 
Vol. 1, p. 206). Normalization is 
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4

0
0 0

( , ) 1d dr r t
π

ρ
∞

Ω ⋅ =∫ ∫  (23) 

For isotropic scattering, D = cL/3, where L is the scattering length = mean free path, 
while for non-isotropic scattering, D = cL/(3(1-<cosθ>)) [18]. This relation for the 
diffusion constant is derived in Appendix C. For the Henyey-Greenstein approximation, 
it is easily shown that <cosθ> = g, where < > indicates an ensemble average over the 
distribution. For long times, the density decays as t–3/2. 

8.3 TOTAL PARTICLE EXIT RATE PAST r = R 

The expected number of  particles in a sphere of radius R at time t is given by 

 2
0

0

( , ) 4 ( , )
R

P R t dr r r tπ ρ= ⋅ ⋅∫    . (24) 

Then the total rate (s–1) at which particles exit the sphere r = R is given by 

 2
0 0

0

( ) 4 ( , )
R

F t dr r r t
t

π ρ∂
= − ⋅ ⋅

∂ ∫    . (25) 

Substituting (22) into (24) and carrying out the necessary operations yields an exit rate of 

 
2

3
/ 4

0 1/ 2 3/ 2 5/ 2( )
4

R DtRF t e
D tπ

−=    , (26) 

which, for long times, decays as t-5/2. 

8.4 “FIRST–PASSAGE” EXIT RATE THROUGH r = R 

In our Monte Carlo model, when a photon exits the sphere with radius r = R, it is 
removed from the system and cannot return to the inside of the sphere. Thus we model 
the “first-passage time” through r = R [17] and the corresponding first-passage exit rate. 
The first-passage particle density inside the sphere is denoted ρ1(r,t). As discussed in 
[17], this is the solution to the diffusion equation (20) when an absorbing barrier is placed 
at r=R; the appropriate boundary condition at R can be shown to be ρ1(R,t)= 0. We find 
ρ1(r,t) using classical separation-of variables. We have 

 
2

2
2 ( )DD r

t r r
ρ ρ ρ∂ ∂

= ∇ =
∂ ∂

   . (27) 

We define 

 1( , ) ( ) ( ), ( ) 0r t U r T t U Rρ ≡ =    . (28) 
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Then 

 
2

2
2

1 1 ( )dT d rU const k
DT dt Ur dr

= = ≡ −    . (29) 

The solution for T is 

 
2

~ Dk tT e−    . (30) 

We set u(r) = rU(r). Then 
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+ =

= +∑
   . (31) 

Since u → 0 as r → 0, Bn = 0 for all n. Since U(R) = 0, u(R) =0; thus knR = nπ, 
and 
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To compute the An, we note that 
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Then 
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We now compute the first-passage time probability density F1. 

 2 2 1
1 1

0 0

( ) 4 ( , ) 4
R R

F t r dr r t r dr
t t

ρπ ρ π ∂∂
= − ⋅ = − ⋅

∂ ∂∫ ∫    . (35) 

F1(t) dt is the probability of exiting the sphere in the time interval (t, t+dt); F1 can 
therefore be interpreted as the rate (s–1) at which particles exit the absorbing sphere (“exit 
rate”) at r = R. 
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The integral equals (R2/nπ)(–1)n+1; thus 
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For long times, the n = 1 term dominates, and F1(t) decays exponentially as  
exp(–Dπ2t/R2). This should be contrasted with the comparatively slow (t–5/2) power-law 
exit rate (26), corresponding to the case where photons are never removed from the 
system. 

The intensity (m–2 s–1) of photons at R is 

 12( ) ( )
4

NI t F t
Rπ

=  (39) 

We also note that for small angle scattering the diffusion constant becomes 
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and the intensity becomes 
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This is somewhat different from the corresponding equation derived for an 
astrophysical situation by Alcock and Hatchett [19]; the differences are discussed in 
Appendix B. 

8.5 TELEGRAPH EQUATION 

The speed of light does not appear in the diffusion equation (20), and the solution 
implies that a small number of photons travel faster than c, which is clearly non-physical. 
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This situation may be remedied by use of the telegraph equation [20], which combines 
the diffusion and wave equations: 

 
2

2
2

1 1
D t c t

ρ ρρ ∂ ∂
∇ = +

∂ ∂
   . (42) 

Morse and Feshbach ([16], p.868) give the Green function solution as 

 0 0( ,0) ( ), ( , ) 0T Tr r tρ δ ρ= ∞ =  

 ( ) ( )
2 1/ 22 2 2 2

0 12( , ) exp / 2 , 0
8 2T

c cXr t I c t D X c t r
D X D

ρ
π

⎛ ⎞= − ≡ − >⎜ ⎟
⎝ ⎠

 (43) 

where I1(x) is the modified Bessel function. (Morse and Feshbach use a different 
normalization. To normalize so that the integral over all space is unity, their solution 
must be multiplied by 1/4πD).  

The most complete theoretical treatment of photon transport is the Elastic 
Boltzmann Transport Equation. Detailed solutions to this equation have been obtained by 
Cai, Alfano, et al. [21]. 

8.6 SUMMARY AND COMPARISON WITH MONTE CARLO MODEL 

To summarize: based on the diffusion equation for isotropic scattering, in a 
uniform scattering medium for an impulse of photon emission at t = 0, r = 0, at a given 
range r, for long times the density decays as t-3/2, the total photon exit rate through a 
sphere decays as t–5/2, and the first-passage exit rate through a sphere decays as  
exp(–Dπ2t/R2) = exp(–π2cLt/(3R2)) = exp(–π2ct/(3R(R/L)). Figure 18 compares the 
probability density of first-passage time from diffusion theory (solid lines) and from the 
results of the Monte Carlo model (circles). The abscissa indicates the time after the laser 
pulse strikes the target. Note changes in scales from graph to graph. We again assume 
that R = 100 m. The vertical dashed line indicates the ballistic photon flight time = R/c = 
0.33 µsec. 

The figure shows that the results from the two theories converge as R/L increases 
and as g decreases, which is expected. We conclude that the Monte Carlo model is 
consistent with diffusion theory. For the very early-arriving photons analyzed in Section 
6, the model applies but the diffusion equation does not. 
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Figure 18. Comparison of Results from Diffusion Theory and from Monte Carlo Model 
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9.  CONCLUSION 

The IDA Flash Lidar Monte Carlo model can provide a useful tool for estimating 
the quality of 3D imagery from flash lidar through obscurants and for sorting out the 
effects of ballistic, diffuse, and “noise” photons. In principle, moving targets could be 
imaged if the sensor/processor could track the target, estimate its 3D translation and 
rotation as a function of time, and place photons in the correct voxels accordingly. The 
Geiger Remapping Technique can be a useful tool for interpreting images made using 
Geiger detectors. 
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APPENDIX A: METHOD OF GENERATING RANDOM 
SCATTERING ANGLES ACCORDING TO THE SINE–WEIGHTED 

HENYEY–GREENSTEIN DISTRIBUTION [7] 

For Monte Carlo simulations it is necessary to select θ-values from the sine-
weighted Henyey-Greenstein (HG) function, given by 

 
( )

2
1
2 3/ 22

sin (1 )( ) sin ( )
2 1 2 cos

gW
g g

θθ θ θ
θ

−
= Φ =

+ −
   . (A1) 

Here, the solid-angle factor of sinθ is included directly in the probability density function 
(cf. Eq. 2) and the normalization condition is 
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∫ ∫ ∫    . (A2) 

(The g = 0 case, namely isotropic scattering, is easily checked.) 

We now wish to generate random values of θ with probability density given by 
(A1). A general method for generating random numbers with a specified density is 
outlined in [8], Chapter 7. Let x be uniform in [0, 1]; that is, x has density function 

 
1; 0 1

( )
0; otherwise

x
xρ

≤ ≤⎧
= ⎨

⎩
   . (A3) 

Assume there is a function θ = f (x)  that transforms ρ into W. By conservation of 
probability, W must satisfy 

 ( ) ( )x dx W dρ θ θ=    . (A4) 

Rearranging, one finds 

 ( )dx W
d

θ
θ

=    , (A5) 

which is easily integrated to yield 

 ( ) ( )x W d Fθ θ θ= =∫    . (A6) 
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Here F(θ) is the cumulative distribution. The desired transformation is given by the 
inverse of the cumulative distribution function, namely  

 1( ) ( )f x F xθ −= =  (A7) 

In order to arrive at a closed-form solution for f, we require both a closed-form 
expression for the cumulative distribution, and a closed-form expression for the inverse. 
For the sine-weighted HG function, both closed-form expressions exist.  

Using equation-solving software, the cumulative probability function is found by 
computing the integral 
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and the inverse function is found to be 
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APPENDIX B: MODEL OF ALCOCK AND HATCHETT—SMALL–
ANGLE SCATTERING 

Using the equations of radiative transport in a scattering medium and under the 
assumption of very small scattering angles, Alcock and Hatchett [19] computed an exact 
solution for photon scattering vs. angle and time. Their results have been frequently 
quoted and used, for example, in [22]. A brief summary of their results follows. 

In the notation of [19], φ = angle between photon trajectory and radius vector, θ = 
scattering angle, κ = scattering coefficient = 1/L, τ = optical depth = R/L, N = total photon 
number, γ = ct/L, and ζ = φ2. Alcock and Hatchett obtain an expression for the intensity 
(m–2 s–1), given by 

 2 2( , ) ( , ; )
4
N cI t P

R
κφ ς γ τ

π
=    . (B1) 

In the limit of τ → ∞, that is, a large number of scatterings they show that 
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   , (B2) 

where G is a complicated integral function given, and graphed, in [19]. The integral over 
angle is 
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In our notation, the intensity (m–2 s–1) vs. time is found from (B1) and (B3) to be 
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By comparison, our (43) is 
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The coefficient of (B5) is π/3 times that of (B4); more importantly, the exponent of (B5) 
is 1/3 that of (B4). These differences are discussed in Appendix C. 
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APPENDIX C: DIFFUSION CONSTANT 

This Appendix documents the construction of appropriate rotation matrices with 
which to implement the random walk for the Ballistic Imaging model. In the limit of a 
large number of scattering events the random walk can be treated as an isotropic diffusion 
problem; the diffusion constant for this limit is derived 

By convention, the photon travel direction is chosen to be along the positive z axis 
of the current frame (the “photon frame”). That is, in the current photon frame the 
direction of travel is always (0,0,1). The net photon displacement must be computed in a 
global coordinate system (“lab frame”). The transformation from photon frame to lab 
frame is accomplished by a suitable product of rotation matrices, developed below.  

Each scattering event is described by two angles, θ and φ. The polar angle θ is 
measured from the positive z axis of the frame before scattering to the positive z axis of 
the frame after scattering, and is chosen from the sine-weighted Henyey Greenstein 
probability density. The azimuthal angle φ is measured from the positive x axis of the 
frame before scattering to the positive x axis of the frame after scattering, and is chosen 
from a uniform probability density on [0, 2π). The path length between two scattering 
events is selected from an exponential probability density 

 /1( ) l L
Lf l e−=  , (C1) 

where L is the mean free path. 

Figure C-1 shows the relation between the frames before and after a scattering 
event. The (x, y, z) frame is before scattering, while the (x″,y″,z″) frame is after scattering. 
The rotation order convention is to rotate first by φ about the z axis to yield the (x′, y′, z′) 
frame, then by θ about the x′ axis to give the (x″, y″, z″) frame. The net rotation is built up 
in two steps. The coordinates of a vector in the (x′, y′, z′) frame are expressed in terms of 
the coordinates in the (x, y, z) frame through 
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Figure C-1. Coordinate Systems 

Similarly, the coordinates of a vector in the (x′, y′, z′) frame are expressed in terms of the 
coordinates in the (x″, y″, z″) frame through 
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The net rotation relating coordinates before and after scattering is 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

′′
′′
′′

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

′′
′′
′′

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

z
y
x

M
z
y
x

RR
z
y
x

xz ),(
cossin0

sincoscoscossin
sinsincossincos

)()( θφ
θθ

θφθφφ
θφθφφ

θφ    .(C4)  

The nth scattering event is described by the rotation matrix Mn=M(φn,θn). Since the photon 
direction is always (0,0,1) in the current photon frame, the photon direction in the lab 
frame is found by transforming (0,0,1) backwards n times via the matrix product 
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Letting Sn denote the matrix product at the nth scattering event, and k denote (0,0,1) in 
the current photon frame, one then arrives at the “scattering direction map” given by 

 
vn = Sn k
Sn+1 = Sn Mn +1 ; S0 = 1

   . (C6) 

In the lab frame the net displacement of the photon after n steps is 
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where lα is the step length at step α. 

The diffusion constant for the random walk is found as follows. The mean square 
displacement after n steps is 
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where T denotes the transpose operation and <> denotes ensemble average. Simple 
manipulation yields 
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The first sum (diagonal terms) evaluates to n <l2>, since the Sα are orthogonal 
matrices and satisfy Sα

T = Sα
–1. In the second sum (off diagonal terms) the average over 

step lengths and angles factors, since the step lengths and the scattering angles come from 
statistically independent physical processes. Also, the steps lengths are independent, so 
<lα lβ> =<lα><lβ> = <l>2. Applying these facts to (C9) yields 
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∑    . (C10) 

The average in the sum is given by 
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where the third equality follows from orthogonality and the last equality follows from the 
independence of the scattering events. Using the fact that <sinφ> = <cosφ> = 0 the 
average rotation matrix is found from (C4) to be 
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Therefore 
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and it follows that 
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The double sum can be evaluated by recognizing there are (n-k) terms of <cosθ>k, hence  
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The second sum in (C15) can be evaluated by standard techniques1 and the result is 
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Since the steps are chosen from an exponential probability density the mean square step 
length and mean free path are related via2 2 2 22 2l l L< > = < > = . The mean square 
displacement is then 
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For large n and for sufficiently large scattering angles θ (to be discussed further below), 
cos nθ< >  can be neglected in the numerator of (C17) and one arrives at 
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For a three-dimensional random walk the diffusion constant is related to the mean square 
displacement and the flight time through [23] 
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 2 6R Dt< > =    . (C19) 

Combining (C18) and (C19) and using the fact that after n scatterings the average path 
length is nL=ct, where c is the speed of light and that 2 22l L< > = , the diffusion 
constant is given by 
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We now examine the restriction on the scattering angle θ in arriving at the approximation 
in (C18). The approximation starts with 
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which for small angles becomes 

 

( )

1   

 1

11

2

2
2

2
2

22
22

>>><

><<<><−

><−<<>−<

θ

θθ

θθ

n

n
nn

n

   , (C22) 

or 

 1>>rmsnθ    . (C23) 

The central assumption in Alcock and Hatchett’s treatment [19] of X-ray 
scattering is that of extremely small scattering angles and a relatively small number of 
scattering events, characterized by the opposite condition to (C23), namely [24] 

 1<<rmsnθ    . (C24) 

The diffusion analysis outlined in this Appendix does not, therefore, apply to their 
treatment. In fact, Alcock and Hatchett say (pp. 459–460), “These formulae are all 
developed under the assumption that the resultant angle of the photon trajectory after any 
number of scatterings is small. This requirement keeps the analysis in a quantitatively 
different regime from that of random walk analyses, and the results are qualitatively 
different.” 
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